Исследование распространения акустико-гравитационных волн от тропосферных источников в верхнюю атмосферу

Ю.А. Курдяева¹, С.П. Кшевецкий², С.Н. Куличков^{3,4}, О.П. Борчевкина¹

¹Калининградское отделение института земного магнетизма и распространения радиоволн им. Н. В. Пушкова РАН, Калининград, Россия ²Балтийский федеральный университет им. Иммануила Канта, Калининград, Россия ³Институт физики атмосферы имени А. М. Обухова РАН, Москва, Россия ⁴Московский государственный университет имени М.В. Ломоносова, Москва, Россия

Meteorological Driving of Geospace

Рис.: 1. Схема различных механизмов воздействия процессов в нижних слоях атмосферы на ионосферу и термосферу (Forbes, 2012)

Изменение параметров верхней атмосферы и ионосферы часто обусловлено различными возмушениями в тропосфере, например метеорологическими явлениями. Метеорологические источники генерируют акустикогравитационные волны (АГВ). Численное моделирование распространения АГВ является эффективным инструментом изучения динамических процессов в атмосфере. Одна из трудностей моделирования волн. распространяющихся от метеорологических источников, состоит в том, что они разнообразны и имеют сложную пространственную структуру, развивающуюся со временем. Доступной экспериментальной информации обычно недостаточно для реалистичного подробного описания таких источников волн. Поэтому, при численном моделировании трудно оценить амплитуды генерируемых АГВ.

Корректные граничные условия и численная модель

Математическое исследование показало, что решение задачи о распространении акустикогравитационных волн от вариаций плотности и температуры на поверхности Земли однозначно определяется переменным давлением на поверхности Земли, но не зависит от деталей задания температуры и плотности.

Рис. 2.Сравнение численного и аналитического решения для акустических (a,b) и внутренних гравитационных волн(c,d) (Kurdyaeva et al.,2018).

Модель "AtmoSym"

Моделирование основано на численном решении полной трехмерной системы нелинейных гидродинамических уравнений для атмосферного газа.

$$\begin{split} &\frac{\partial\rho}{\partial t} + \frac{\partial\rho u}{\partial x} + \frac{\partial\rho v}{\partial y} + \frac{\partial\rho w}{\partial z} = 0, \\ &\frac{\partial\rho u}{\partial t} + \frac{\partial\rho u^2}{\partial x} + \frac{\partial\rho uw}{\partial y} + \frac{\partial\rho uw}{\partial z} = -\frac{\partial\rho}{\partial x} + \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \zeta(z) u + \frac{\partial}{\partial z} \zeta(z) \frac{\partial}{\partial z} u, \\ &\frac{\partial\rho u}{\partial t} + \frac{\partial\rho u}{\partial x} + \frac{\partial\rho u}{\partial y} + \frac{\partial\rho w}{\partial z} = -\frac{\partial\rho}{\partial z} + \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y}\right) \zeta(z) v + \frac{\partial}{\partial z} \zeta(z) \frac{\partial}{\partial z} v, \\ &\frac{\partial\rho w}{\partial t} + \frac{\partial\rho u}{\partial x} + \frac{\partial\rho w}{\partial y} + \frac{\partial\rho w^2}{\partial z} = -\frac{\partial\rho}{\partial z} - \rho g + \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \zeta(z) w + \frac{\partial}{\partial z} \zeta(z) \frac{\partial}{\partial z} w, \\ &\frac{1}{\gamma - 1} \left(\frac{\partial\rho}{\partial t} + \frac{\partial\rho u}{\partial x} + \frac{\partial\rho v}{\partial y} + \frac{\partial\rho w}{\partial z}\right) = -P \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z}\right) + \\ &+ \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) \kappa(z)T + \frac{\partial}{\partial z} \kappa(z) \frac{\partial}{\partial z}T + Q_0(z) + Q_{viscous} \\ &Q_0(z) = -\frac{\partial}{\partial z} \kappa(z) \frac{\partial}{\partial z} T_0(z), P = \frac{\rho H}{\mu} \end{split}$$

Рис.3. Вариации давления, зафиксированные на 4-х станциях в московском регионе 18 июля 2016: красная линия – ИФА, голубая линия – МГУ, черная линия – МосРентген, зелная линия – Звенигородская станция.

Рис. 4. Карты давления, построенные по данным базы реанализа MERRA-2 для 18 июля 2016 года и изображения облачной обстановка, полученные с использованием сервиса NASA's Earth Observing System Data and Information System (EOSDIS).

Для расчетов использованы данные наблюдений флуктуаций атмосферного давления в нижней тропосфере в московском регионе. Данные наблюдений вариаций давления на поверхности Земли за 2016 год были обработаны. Были выделены случаи сильных колебаний давления, когда вариации они превышали среднестатистические колебания давления в 30 раз. Максимальные значения в 30 раз. Максии мальные значения в 30 раз. Максии мальные значения в 30 раз. Максии мальные значения в 30 раз. Максимальные значения в 30 раз. Максии мальные значения в 30 раз. Максимальные значения в 30 раз. Максиния в 30 раз. Максимальные значения в 30 раз. Максимальные значения в 30 раз. Максиния в 30 раз. Максимальные значения в 30 раз. Максиния в 30 раз. Максимальные в 30 раз. Максиния в 30 раз. Максимальные в 30 раз. Максимальные в 30 раз. Макси в 30 раз. Максиния в 30 раз. Макси в 30 раз. Макси в 30 раз. Мак

Рис. 5. Фурье-анализ для экспериментально полученных данных о вариациях давления: красная линия – ИФА, голубая линия – МГУ, черная линия – МосРентген, зелная линия – Звенигородская станция.

900

Распределение вариаций поля давления в окрестности каждого из 4 микробарографов аппроксимируется функцией:

$$f_{p,i}(x,y,t) = \exp\left(-\frac{(x-x_i)^2 + (y-y_i)^2}{\lambda^2}\right)q_i(t).$$
 (1)

Здесь значения (x_i, y_i) задают координаты микробарографа с номером *i*, а функция $q_i(t)$ описывают поведение волновой добавки к фоновому давлению на *i*-ом микробарографе, и строятся на основе интерполяции оцифрованных с 12-секундным шагом данных колебания атмосферного давления. Параметр λ характеризует эффективную ширину вводимого граничного источника и определяется эмпирически, на основе исследования корреляции показаний микробарографов, в зависимости от расстояния между ними. Если микробарографы расположены достаточно часто, то расчеты не критичны к значению параметра λ . Результирующее поле вариаций атмосферного давления получается суммированием отдельных полей f(p, i)(x, y, t), соответствующих вариациям давления в окрестности каждого микробарографа

$$f_{\rho}(x,y,t) = \sum_{i=1}^{4} f_{\rho,i}(x,y,t)\eta(t) \left(1 - \exp\left(-\frac{t}{\tau}\right)\right)$$
(2)

Поскольку интерес представляют только волны, генерируемые колебаниями давления на нижней границе расчетной области, начальные условия

$$u(x, y, z, t = 0) = 0, v((x, y, z, t = 0)) = 0, w((x, y, z, t = 0)) = 0,$$

$$\rho((x, y, z, t = 0)) = \rho_0(z), T((x, y, z, t = 0)) = T_0(z),$$
(3)

соответствуют отсутствию волн в начальный момент времени. Верхняя граница находится на высоте h = 500 км. Верхние граничные условия являются обычными для термосферных моделей:

$$\left. \frac{\partial T}{\partial z} \right|_{z=h} = 0, \qquad \left. \frac{\partial u}{\partial z} \right|_{z=h} = 0, \qquad \left. \frac{\partial v}{\partial z} \right|_{z=h} = 0, \qquad w|_{z=h} = 0.$$
(4)

Условия на нижней границе имеют специальный вид:

$$u(x, y, z = 0, t) = 0, v(x, y, z = 0, t) = 0,$$

$$\frac{\partial w(x, y, z = 0, t)}{\partial z} = 0, T(x, y, z = 0, t) = T_0(0), P(x, y, z = 0, t) = P_0(0) + f_p(x, y, t),$$

(5)

где $f_p(x, y, t)$ – функция, описывающая изменения поля давления и эмпирически определенная на основе экспериментальных наблюдений и $P_0(0)$ – это давление на поверхности Земли.

Начальные и граничные условия. Горизонтальные симмметричные и ассиметричные условия

Горизонтальные граничные условия:

$$\begin{split} & u(x=L_x,y,z,t)=u(x=0,y,z,t)\,,\\ & v\left(x=L_x,y,z,t\right)=v\left(x=0,y,z,t\right),\\ & w\left(x=L_x,y,z,t\right)=w\left(x=0,y,z,t\right),\\ & \rho\left(x=L_x,y,z,t\right)=\rho\left(x=0,y,z,t\right),\\ & T\left(x=L_x,y,z,t\right)=T\left(x=0,y,z,t\right),\\ & P\left(x=L_x,y,z,t\right)=P\left(x=0,y,z,t\right), \end{split}$$

$$\begin{aligned} & u(x, y = L_y, z, t) = u(x, y = 0, z, t), \quad (6) \\ & v(x, y = L_y, z, t) = v(x, y = 0, z, t), \\ & w(x, y = L_y, z, t) = w(x, y = 0, z, t), \\ & \rho(x, y = L_y, z, t) = \rho(x, y = 0, z, t), \\ & T(x, y = L_y, z, t) = T(x, y = 0, z, t). \\ & T(x, y = L_y, z, t) = T(x, y = 0, z, t). \end{aligned}$$

Моделирование первоначально проводилось с периодическими условиями на горизонтальных границах. Для контроля надёжности выполняются симуляции для двух вычислительных областей, размеры которых по горизонтали составляют 1020 км х 1020 км и 1320 км х 1320 км.

Рис. 6. Сечение плоскостью у=0 поля изменения температуры (a,b) и поля изменения горизонтальной скорости (c,d) для времени t=20 минут для региона 1020 км× 1020 км (левая панель) аналогично для области 1320 км × 1320 км (правая панель). « € > € €

うくぐ

Начальные и граничные условия. Горизонтальные симмметричные и ассиметричные условия

Горизонтальные граничные условия:

$$\begin{split} &u\left(x=L_{x},y,z,t\right)=-u\left(x=0,y,z,t\right),\\ &v\left(x=L_{x},y,z,t\right)=v\left(x=0,y,z,t\right),\\ &w\left(x=L_{x},y,z,t\right)=w\left(x=0,y,z,t\right),\\ &\rho\left(x=L_{x},y,z,t\right)=\rho\left(x=0,y,z,t\right),\\ &T\left(x=L_{x},y,z,t\right)=T\left(x=0,y,z,t\right),\\ &P\left(x=L_{x},y,z,t\right)=P\left(x=0,y,z,t\right), \end{split}$$

$$\begin{aligned} & u(x, y = L_y, z, t) = u(x, y = 0, z, t), \quad (7) \\ & v(x, y = L_y, z, t) = -v(x, y = 0, z, t), \\ & w(x, y = L_y, z, t) = w(x, y = 0, z, t), \\ & \rho(x, y = L_y, z, t) = \rho(x, y = 0, z, t), \\ & T(x, y = L_y, z, t) = T(x, y = 0, z, t). \\ & T(x, y = L_y, z, t) = T(x, y = 0, z, t). \end{aligned}$$

Моделирование первоначально проводилось с периодическими условиями на горизонтальных границах. Для контроля надёжности выполняются симуляции для двух вычислительных областей, размеры которых по горизонтали составляют 1020 км х 1020 км и 1320 км х 1320 км.

Рис. 6. Сечение плоскостью у=0 поля изменения температуры (a,b) и поля изменения горизонтальной скорости (c,d) для времени t=20 минут для региона 1020 км× 1020 км (левая панель) аналогично для области 1320 км × 1320 км (правая панель). « € > € €

 $\mathcal{O} \land \mathcal{O}$

Рис. 7. Сечение плоскостью у=0 поля изменения температуры для времени t=1 час для граничных условий (6) для области 1020 км x 1020 км (a), 1320 км x 1320 км (b) и для граничных условий (7) для области 1320 км x 1320 км x 1320 км (c).

Рисунки 8a and 8b демонстрируют волновое поле для времени t=1 час 30 минута после активации источников. Расчеты выполнены с использованием граничных условий (6). В верхней атмосфере амплитуда волновых изменений приблизительно 100 К. Амплитуда изменений горизонтальной скорости около 60 м/с.

Рис. 8. Сечение плоскостью у=0 поля изменения температуры и поля изменения горизонтальной скорости (a,b) для времени t=1 час 30 минут с граничными условиями (6) и аналогично для времени t=1 час 31 минута (c,d)

(日)、(四)、(日)、(日)、

На рисунке 9 видно, что для времени 1 час 40 минут расчеты с горизонтальными граничными условиями (6) и (7) результат почти одинаковый. Различия присутствуют в центре волновой картины, а не горизонтальных границах, но различия возникают сначала в центре от границ.

Рис. 9. Сечение плоскостью у=0 поля изменения температуры t= 1 час 41 минуту с граничным условиями (6)(a) и с граничными условиями(7)(b).

Рис. 10. Сечение плоскостью y=0 поля изменения температуры для времен t = 1 ч 50 м, 1 ч 59 м, 2 ч 11 м, 2 ч 14 м, 2 ч 31 м для граничных условий (6) – (a),(c),(e),(g),(k) и граничных условий (7) – (b), (d), (f), (g), (i).

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへの

Рассмотрим дисперсионное соотношение для атмосферных акустических волн:

$$\omega_s^2 = c_s^2 (k_x^2 + k_y^2 + k_z^2 + \frac{1}{4H^2}), \tag{8}$$

где $c_s = \sqrt{\gamma g H}$ – скорость звука, H– высота однородной атмосферы, k_x, k_y, k_z компоненты волнового вектора. Из дисперсионного соотношения следует, что для длинных инфразвуковых волн компонента вертикальной групповой скорости имеет вид $\frac{\partial \omega_s}{\partial k_z} = \frac{c_s^2}{\omega} k_z \approx 2Hk_z c_s.$ Видно, что при очень малых k_z волна распространяется очень медленно.

- Расчеты показали, что в течение первых 2,5 часов основное влияние оказывают инфразвуковые волны, достигшие верхних слоев атмосферы.
- Амплитуда волновых температурных возмущений в верхних слоях атмосферы составляет примерно 100 K, а амплитуда горизонтальной скорости 60 м / с.
- В верхних слоях атмосферы примерно через два часа после активации источников формируется нагретая зона шириной 500 км с температурой, превышающей фоновую на 10-15 К, формируется над источником. Эта нагретая зона погружается в нагретую зону шириной 1000 км с температурой, превышающей фоновую на 5 К. Эти нагретые зоны, скорее всего результат диссипации инфразвуковых волн, которые распространяются вверх очень медленно благодаря своим
- Внутренние гравитационные волны захватываются тропосферных квазиволноводом. Это задерживает их распространение и на малых временах их значительный вклад не наблюдается.

Работа выполнена при финансовой поддержке РФФИ (проект № 17-05-00574 и №18-05-00184). Работа выполнена с использованием оборудования Центра коллективного пользования сверхвысокопроизводительными вычислительными ресурсами МГУ им. М.В. Ломоносова.

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

Спасибо за внимание!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ