УДК 537.86

МОДЕЛИРОВАНИЕ ВЛИЯНИЯ ЭФФЕКТА ФАРАДЕЯ НА КАЧЕСТВО ПАРАМЕТРОВ ИОНОСФЕРЫ, ИЗВЛЕКАЕМЫХ ИЗ СИГНАЛОВ НЕКОГЕРЕНТНОГО РАССЕЯНИЯ

С.С. Алсаткин, А.В. Медведев

SIMULATING THE INFLUENCE OF THE FARADAY EFFECT ON QUALITY OF IONOSPHERIC PARAMETERS EXTRACTED FROM THE INCOHERENT SCATTER SIGNAL

S.S. Alsatkin, A.V. Medvedev

Приводятся оптимальные характеристики сигнала, способного качественно восстанавливать исходный профиль мощности для различных значений электронной концентрации, отношения T_c/T_i .

Optimal characteristics of the signal for high quality restoring of the profile of as well as for different value of electron density and ratio T_e/T_i .

Введение

Исследования процессов в ионосфере обусловлены необходимостью дальнейшего развития представлений о характере солнечно-земных связей и поведении ближнего космоса, усовершенствования используемых моделей и увеличения надежности анализа состояния среды при различных гелио- и геофизических условиях.

Поэтому в современных исследованиях процессов в ионосфере на первое место выдвигаются требования повышения точности измерения параметров ионосферной плазмы и улучшения разрешающей способности измерений. В первую очередь такие требования связаны со стремлением исследовать с хорошей детальностью нижние слои ионосферы (Е и D).

Точность измерения связана с отношением сигнал/шум: чем оно выше, тем выше точность. При использовании согласованной обработки отношение сигнал/шум на выходе фильтра при условии, что на входе действует белый шум, определяется выражением $q_{\rm max}^2 = E_{\rm s}/W_0$ [Гоноровский, 1971; Кобзарева, 1969]. Из формулы видно, что отношение сигнал/шум при согласованной обработке зависит только от энергии излучаемого сигнала и не зависит от его формы, т. е. чтобы повысить точность измерения, нужно увеличить энергию излучаемого сигнала, однако в случае прямоугольного импульса при этом ухудшится разрешающая способность измерений, о которой будет говориться ниже.

Разрешающая способность по дальности в радиолокации представляется как минимальное расстояние между двумя неподвижными точечными целями, при котором отраженные от них сигналы можно различить в присутствии шума. В случае отсутствия шума и при известной форме излучаемого сигнала отраженные сигналы от двух неподвижных точечных целей будут полностью выделяться из сложного отраженного сигнала независимо от того, насколько близко друг к другу расположены цели. Однако шум присутствует в любых измерениях.

В качестве меры различимости вводят понятие функции неопределенности по дальности, которая выражается формулой

$$c(\tau) = \int_{-\infty}^{+\infty} u^*(t) u(t-\tau) dt,$$

где u(t) – огибающая отраженного сигнала от первой цели; $u(t-\tau)$ – огибающая отраженного сигнала от второй цели; а τ – время запаздывания сигнала от второй цели относительно сигнала от первой цели [Кобзарева, 1969; Свистов, 1977].

Функция $|c(\tau)|$ имеет максимальное значение при т=0, когда цели неразличимы, и спадает при увеличении τ (при достижении определенного значения τ_0 цели становятся полностью различимыми). Разрешающая способность будет тем лучше, чем уже будет функция $|c(\tau)|$, т. е. будет иметь острый пик при τ=0 и быстро спадать до очень малого значения при увеличении τ в обе стороны от 0. Для прямоугольного импульса улучшение разрешающей способности достигается уменьшением его длительности, однако такое действие приводит к ухудшению соотношения сигнал/шум, что автоматически влечет снижение разрешающей способности. Получается замкнутый круг. К тому же сигнал некогерентного рассеяния является очень слабым шумоподобным сигналом и уменьшение отношения сигнал/шум отрицательно сказывается на точности измерения параметров.

В радиолокационной технике с целью повышения разрешающей способности в измерении дальности до объекта и сохранения точности измерения (обеспечить приемлемое отношение сигнал/шум) достаточно давно используются сложные сигналы. Математически сложный сигнал можно представить в виде формулы $A(t)e^{-i\cdot\omega(t)t+i\varphi(t)}$, в которой один или несколько параметров (A(t), $\omega(t)$ или $\varphi(t)$) изменяются по определенному закону. Если дан закон изменения для A(t), тогда имеем дело с амплитудной модуляцией; для $\omega(t)$ – с частотной модуляцией; для $\varphi(t)$ – с фазовой модуляцией. Сложные сигналы позволяют улучшить разрешающую способность, не ухудшая при этом отношения сигнал/шум [Кобзарева, 1969; Свистов, 1977; Тихонов, 1983].

Использование сложных сигналов в ионосферных исследованиях не является совершенным методом, поскольку свойства ионосферы изменяются во времени и пространстве. Возможность использования сложных сигналов на радаре некогерентного рассеяния в Аресибо, в частности кодов Баркера, исследовалась в работе [Gray, Farley, 1973]. В этой работе показано, что общая длительность сложного сигнала, при которой не происходит значительных искажений в его структуре, должна быть меньше временного расстояния до первого нуля, образуемого пересечением с осью абсцисс автокорреляционной функции (АКФ) рассеивающей среды. Авторы предполагали, что посылаемый импульс рассеивается очень тонкими слоями. Результаты рассеяния сигнала на этих слоях образуют свертку с действительным распределением электронной плотности. Вследствие временных изменений слоя рассеянный сигнал от слоя записан как

где b(t) – излучаемый сигнал, f(t) – функция, описывающая поведения слоя со временем. На выходе согласованного фильтра принятый сигнал запишется как

$$G(t) = \int_{-\infty}^{+\infty} b(t_1) f(t_1) b(t_1-t) dt_1$$

Так как ионосферный сигнал представляет собой случайный процесс, то берутся средние по ансамблю значения мощности на выходе приемника:

$$\left\langle \left| G(t) \right|^{2} \right\rangle = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} b(t_{1}) b(t_{2}) \left\langle f(t_{1}) f^{*}(t_{2}) \right\rangle \times b(t_{1}-t) b(t_{2}-t) dt_{1} dt_{2}.$$

Если положим $t_2 = t_1 + \tau$ и введем обозначение

$$\left\langle f(t_1) f^*(t_1 + \tau) \right\rangle = \rho(\tau),$$

где $\rho(\tau)$ – АКФ некогерентного рассеяния, то

$$\left\langle \left| G(t) \right|^2 \right\rangle = \int_{-\infty}^{+\infty} \rho(\tau) F(t,\tau) d\tau,$$

где $F(t,\tau) = \int_{-\infty}^{+\infty} b(t_1) b(t_1+\tau) b(t_1-t) b(t_1+\tau-t) dt_1$

функция, зависящая только от выбранного кода. На основе анализа функции $\langle |G(t)|^2 \rangle$ для различных $\rho(\tau)$ и видов кода Баркера в работе [Gray, Farley, 1973] был сделан вывод о том, что наилучшим кодом является 13-элементный код Баркера.

Радар некогерентного рассеяния в Аресибо отличается от Иркутского радара некогерентного рассеяния (ИРНР). ИРНР имеет такую особенность, как линейная поляризация при передаче и приеме, результатом чего становятся наблюдаемые на радиолокационной развертке фарадеевские вариации. На большинстве радаров в экспериментах по зондированию ионосферы излучается и принимается волна с круговой поляризацией, т. е. вращение плоскости поляризации не влияет на полную мощность сигнала [Шпынев, 2000]. Особенность ИРНР приводит к тому, что восстанавливать профиль электронной концентрации нужно по форме фарадеевских вариаций.

Цель данной работы – исследовать влияние фарадеевского вращения на качество восстановления параметров ионосферы (профиля N_e) для различных типов зондирующих сигналов: определить оптимальные характеристики зондирующего сигнала, обеспечивающие наиболее точное восстановление фарадеевских вариаций. Знание наиболее точной формы фарадеевских вариаций необходимо для более точного восстановления профиля электронной концентрации.

В настоящей работе приводятся оптимальные характеристики зондирующего импульса (длительность, число элементов в коде Баркера), которые обеспечивают наиболее точное восстановление исходного профиля фарадеевских вариаций, для различных уровней электронной концентрации и формы спектра мощности НР-сигнала. Данные характеристики получены с помощью радиофизической модели ионосферы [Афифи, Эйзен, 1982], учитывающей основные ее свойства и особенность ИРНР.

Краткое описание входных параметров модели

Математическое представление, полученное для радиофизической модели ионосферы, описывающее поведение отдельной реализации сигнала некогерентного рассеяния, дается выражением [Алсаткин и др., 2007]:

$$G(\tau) = \sum_{i=0}^{P} \sum_{l=-n}^{n} \sum_{k=0}^{m} h(t_k) H(\tau - t_k - t_i) \times b(\tau - t_k - t_i) S(\omega_l) e^{i \cdot \omega_{0,l}(\tau - t_k - t_i)} e^{-i \cdot \varphi_l},$$

где h(t) – импульсная характеристика согласованного фильтра; H(t) – зависимость фарадеевского вращения от времени; b(t) – огибающая излучаемого импульса; $S(\omega_l)$ – спектральная плотность мощности; ω_{∂} и φ – доплеровская частота и фаза отраженного сигнала. Значения как для профиля фарадеевских вариаций H(t), так и для спектральной плотности мощности $S(\omega_l)$ строились по соответствующим формулам.

Выражение для профиля фарадеевских вариаций:

$$\frac{N_{\rm e}(r)}{r^2}\cos^2\left(\frac{e^3B_r\cos(\alpha)}{\varepsilon_0 c\left(2\pi f_0 m_e\right)^2}\int\limits_0^r N_{\rm e}(z)dz\right)$$

где e – заряд электрона, B_r – магнитная индукция, ε_0 – диэлектрическая постоянная, f_0 – частота зондирования, m_e – масса электрона, $N_e(r)$ – электронная концентрация, α – угол между геомагнитным полем и направлением излучения, c – скорость света. Примеры фарадеевских вариаций для различных значений $N_e(r)$ приведены на рис. 1 и 2.

Выражение для спектральной плотности мощности:

$$S(\omega) = \frac{N_{\rm e}(r)}{\omega V \sqrt{\pi}} \frac{\Theta_{\rm e} e^{-\Theta_{\rm e}^2} \left| \alpha_{\rm i}^2 Z(\Theta_{\rm i}) + 1 \right|^2 + \Theta_{\rm i} e^{-\Theta_{\rm i}^2} \left| \alpha_{\rm e}^2 Z(\Theta_{\rm e}) \right|^2}{\left| 1 + \alpha_{\rm i}^2 Z(\Theta_{\rm i}) + \alpha_{\rm e}^2 Z(\Theta_{\rm e}) \right|^2},$$

где $N_{\rm e}(r)$ – электронная концентрация, $\alpha_{\rm e,\,i} = 4\pi \frac{\lambda}{D_{\rm e,\,i}}$ –

отношение длины волны зондирующего сигнала к радиусу Дебая, V – рассеивающий объем, \vec{k} – волно-

вой вектор,
$$Z(\Theta) = 1 - \Theta e^{-\Theta^2} \left(2 \int_{0}^{\Theta} e^{p^2} dp + i \sqrt{\pi} \right)$$
 – инте-

Рис. 1. Фарадеевские вариации N_e =4.3×10⁵ см⁻³ (в максимуме слоя F2).

Рис. 2. Фарадеевские вариации $N_e=9\times10^5$ см⁻³ (в максимуме слоя F2).

грал Ландау,
$$\Theta_{e,i} = \frac{\omega}{k} \left[\frac{m_{e,i}}{2KT_{e,i}} \right]^{\frac{1}{2}}$$
 – частота, норми-

рованная на среднюю скорость движения частицы и волновой вектор зондирующего сигнала. Спектры мощности приведены на рис. 3 и 4. Вид огибающей излучаемого сигнала представлен на рис. 5.

Для оценки качества восстановления профиля фарадеевских вариаций вычисляется коэффициент корреляции [Афифи, Эйзен, 1982]:

$$p = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}.$$

Коэффициент корреляции является нормированным, и его значения лежат в пределе от нуля до единицы.

В модели применяются различные виды зондирующих сигналов – от простого гладкого импульса до фазоманипулированных сигналов (кодов Баркера), в которых переменными параметрами являются как общая длительность, так и длительность одного дискрета. Строятся отклики модели на исследуемые сигналы. Между откликами модели и заданным профилем вычисляются коэффициенты корреляции. Затем для каждого кода Баркера строится зависимость коэффициента корреляции от общей длительности применяемого сигнала.

Результаты моделирования

Задача моделирования заключалась в оценке влияния параметров ионосферы и излучаемого сигнала на качество восстановления профиля фарадеевских вариаций. Основными параметрами ионосферы являются форма фарадеевских вариаций и спектр мощности; параметрами сигнала являются общая длительность и число элементов кода Баркера. В данной работе при

Рис. 3. Спектр мощности *T*_i=800 и *T*_e=800.

Рис. 4. Спектр мощности *T*_i=800 и *T*_e=2500.

Рис. 5. Огибающая излучаемого сигнала: a - 5-элементный код; $\delta - 7$ -элементный код; $\epsilon - 11$ -элементный код; $\epsilon - 13$ -элементный код; $\delta - 13$ -элементны код; $\delta - 13$ -э

моделировании производилось варьирование всех перечисленных параметров, а также отношения сигнал/шум. Форма фарадеевских вариаций вычислялась для трех значений электронной концентрации: минимального, среднего и высокого. Спектр мощности варьировал в зависимости от соотношения T_e/T_i .

Для каждого варьируемого параметра в отдельности строились отклики модели на различные формы зондирующих сигналов и производилось сравнение с заданным профилем. Вычисление отклика осуществлялось по следующему алгоритму: для прямоугольного импульса производилось усреднение по тысяче реализаций, предварительно возведенных в квадрат; для сложных сигналов перед усреднением (также по тысяче реализаций, возведенных в квадрат) производилась согласованная обработка каждой реализации.

На рис. 6 представлены результаты, полученные в ходе моделирования с различными значениями общей длительности импульса, числа элементов в коде Баркера, электронной концентрации в максимуме слоя F2 и при различном уровне шума. Жирной линией изображен профиль мощности, полученный с использованием фазоманипулированного сигнала, штриховой – профиль мощности, получен-

Рис. 6. Профили фарадеевских вариаций: толстая линия – профиль мощности, полученный с использованием фазоманипулированного сигнала, штриховая линия – профиль мощности, полученный гладким прямоугольным импульсом, тонкая линия – исходный профиль мощности; n – число элементов в коде Баркера для фазоманипулированного сигнала; $t_{имп}$ – общая длительность импульса (как прямоугольного, так и фазоманипулированного), N_e – значение электронной концентрации в максимуме слоя F2: n=11, $t_{имп}=44$, $N_e=4.3\times10^5$ см⁻³ (*a*); n=5, $t_{имп}=180$, $N_e=4.3\times10^5$ см⁻³ (*b*); n=7, $t_{имп}=140$, $N_e=17\times10^5$ см⁻³ (*b*); n=13, $t_{имп}=156$, $N_e=9\times10^5$ см⁻³ (*c*); n=5, $t_{имп}=260$, $N_e=4.3\times10^5$ см⁻³ (*b*); n=13, $t_{имп}=104$, $N_e=17\times10^5$ см⁻³ (*c*).

ный гладким прямоугольным импульсом, а тонкой линией – исходный профиль мощности.

Результаты сравнения полученных откликов с исходным профилем мощности, позволяющие судить о качестве восстановления профиля фарадеевских вариаций, представлены на рис. 7 и 8.

На рис. 7 представлены результаты сравнения полученных откликов для неизменного значения N_e в максимуме слоя F2, но различных значений отношения сигнал/шум и T_e/T_i . Анализ графиков показывает, что выбор оптимальных параметров зондирующего сигнала не зависит либо очень слабо зависит от соотношения T_e/T_i .

На рис. 8 представлены результаты сравнения полученных откликов при постоянном значении соотношения T_e/T_i , различных значениях N_e и соотношения сигнал/шум. В отсутствие шума наиболее оптимальным является 13-элементный код, наихудшим – 5-элементный код. Причем позиции 13-элементного кода усиливаются как с увеличением общей длительности зондирующего сигнала, так и с увеличением N_e .

При добавлении шума картина меняется: до определенной длительности излучаемого импульса оптимальным является 5-элементный код, наихудшим – 13-элементный код. После превышения этой длительности излучаемого импульса наилучшим вновь становится 13-элементный код, наихудшим – 5-элементный код. С увеличением N_e влияние длительности излучаемого сигнала стано-

Рис. 7. Коэффициент корреляции между исходным и восстановленным профилями мощности: тонкая линия – 5-элементный код Баркера, линия средней толщины – 7-элементный код Баркера, толстая линия – 11-элементный код Баркера; штриховая линия – 13-элементный код Баокера: N_e =4.3×10⁵ см⁻³, T_i =800, T_e =2500, n/s=0 (*a*); N_e =4.3×10⁵ см⁻³, T_i =800, n/s=0 (*b*); N_e =4.3×10⁵ см⁻³, T_i =800, n/s=0 (*b*); N_e =4.3×10⁵ см⁻³, T_i =800, n/s=1 (*b*); N_e =4.3×10⁵ см⁻³, T_i =800, n/s=1 (*b*).

Рис. 8. Коэффициент корреляции между исходным и восстановленным профилями мощности: тонкая линия – 5-элементный код Баркера, линия средней толщины – 7-элементный код Баркера, толстая линия – 11-элементный код Баркера, штриховая линия – 13-элементный код Баркера, N_e =4.3×10⁵ см⁻³, n/s=0 (*a*); N_e =4.3×10⁵ см⁻³, n/s=1 (*b*); N_e =9×10⁵ см⁻³, n/s=0 (*b*); N_e =9×10⁵ см⁻³, n/s=1 (*c*); N_e =17×10⁵ см⁻³, n/s=1 (*b*); N_e =1

вится меньше. На основании выполненных сравнений полученных откликов видно, что 13элементный код является предпочтительным, так как он способен обеспечивать наибольшую энергетику и наилучшее разрешение по высоте при любых значениях $N_{\rm e}$.

Выводы

Анализ данных, полученных в результате моделирования, позволяет сделать следующие выводы:

1. Выбор оптимальных параметров зондирующего сигнала не зависит либо слабо зависит от соотношения T_e/T_i .

 Наиболее оптимальным является 13-элементный код Баркера, так как при нем обеспечиваются наилучшие разрешение по высоте, отношение сигнал/шум и восстановление профиля фарадеевских вариаций. Полученный результат согласуется с результатами, полученными в статье [Шпынев, 2000]. Работа выполнена при поддержке грантов РФФИ № 10-05-01099-а и № 11-05-00698-а.

СПИСОК ЛИТЕРАТУРЫ

Алсаткин С.С., Медведев А.В., Кушнарев Д.С. Исследование возможности применения сложных сигналов в методе НР путем математического моделирования // Труды XI Конференции молодых ученых «Гелио- и геофизические исследования». Иркутск, 2007. С. 72–76.

Афифи А., Эйзен С. Статистический анализ: Подход с использованием ЭВМ: Пер. с англ. М.: Мир, 1982. 488 с.

Гоноровский И.С. Радиотехнические цепи и сигналы: Учебник для вузов. Изд. 2-е, переработанное и дополненное. М.: Советское радио, 1971. 672 с. Кобзарева Ю.Б. Современная радиолокация (анализ, расчет и проектирование систем). М.: Советское радио, 1969. 704 с.

Свистов В.М. Радиолокационные сигналы и их обработка. М.: Советское радио, 1977. 448 с.

Тихонов В.И. Оптимальный прием сигналов. М.: Радио и связь, 1983. 320 с.

Шпынев Б.Г. Методы обработки сигналов некогерентного рассеяния с учетом эффекта Фарадея: Дисс. ... к.ф.-м.н. / Иркутский госуниверситет. Иркутск, 2000.

Gray R.W., Farley D.T. Theory of incoherent-scatter measurements using compressed pulses // Radio Sci. 1973. V. 8, N 2. P. 123–131.

Институт солнечно-земной физики СО РАН, Иркутск