УДК 523.947:524.7-466

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ СПЕКТРА ТУРБУЛЕНТНЫХ НЕОДНОРОДНОСТЕЙ СОЛНЕЧНОЙ КОРОНЫ ПО СТРУКТУРЕ ЗОНДИРУЮЩЕГО СИГНАЛА

А.Н. Афанасьев

DETERMINATION OF SPECTRUM PARAMETERS OF TURBULENCE INHOMOGENEITIES IN SOLAR CORONA FROM THE SOUNDING SIGNAL STRUCTURE

A.N. Afanasiev

Приведены результаты анализа статистических моментов монохроматического радиоизлучения в окрестности регулярной каустики, образующейся при дистанционном зондировании околосолнечной плазмы. Получены соотношения, связывающие характеристики зондирующего сигнала с параметрами спектра турбулентных неоднородностей короны.

The paper presents the results of analysis of statistical moments of monochromatic radio emission in the neighborhood of a regular caustic produced by radio sounding of near-solar plasma. Expressions are derived which relate sounding signal characteristics to coronal turbulence spectrum parameters.

Введение

Одним из наиболее эффективных методов диагностики неоднородностей электронной плотности околосолнечной плазмы является метод дистанционного радиозондирования [1, 2]. Неоднородности плазмы оказывают влияние на характеристики проходящего сквозь плазму радиоизлучения. В частности, вследствие рассеяния на неоднородностях происходит уширение углового и энергетического спектров радиоизлучения. На измерении этих эффектов основаны методики определения показателя степенного спектра флуктуаций электронной плотности и внутреннего масштаба турбулентности [2]. Данные методики опираются на простое соотношение между функцией пространственной когерентности $\Gamma(\rho)$ поля излучения и струк-

турной функцией фазы $D_{S}(\rho)/\Gamma(\rho) = \exp\left[-\frac{1}{2}D_{S}(\rho)\right]$ и

на связь структурной функции фазы со спектром флуктуаций электронной плотности. Измерения углового и энергетического спектров, наряду с измерениями других характеристик радиоизлучения, позволили получить надежные сведения о форме и характерных параметрах спектра неоднородностей на расстояниях вплоть до нескольких солнечных радиусов. Вместе с тем, области околосолнечной плазмы на меньших гелиоцентрических расстояниях остаются наименее исследованными. Следует отметить, что при просвечивании плазмы вблизи фотосферы существенным может оказаться двухлучевое распространение радиоизлучения и образование регулярной каустики (рис. 1). Каустика является огибающей семейства геометрооптических лучей и отделяет освещенную область, где существуют лучи, от теневой области, где таких лучей нет

Для диагностики параметров неоднородностей плазмы на малых гелиоцентрических расстояниях представляет интерес анализ различных статистических характеристик рассеянного радиоизлучения в окрестности каустической границы. Здесь приводятся результаты такого анализа для функции временной когерентности и средней интенсивности радиоизлучения.

Постановка задачи и модель короны

Предполагается, что на расстоянии R_0 от центра Солнца (рис. 2) расположен источник монохромати-

Рис. 1. Формирование регулярной каустики в солнечной короне. Каустика пересекается с орбитой Земли в точке С.

ческого радиоизлучения частоты *f*. Радиосигнал, прошедший через солнечную корону, регистрируется в пункте приема на Земле.

Неоднородная околосолнечная плазма описывается диэлектрической проницаемостью – случайной функцией координат и времени:

$$\tilde{\varepsilon}(r,t) = \varepsilon_0(r) + \tilde{\varepsilon}_1(r,t),$$

где функция $\varepsilon_0(r)$ связана с распределением средней электронной плотности $N_e(r)$ соотношением $\varepsilon_0(r) = 1 - e^2 N_e(r) / (\pi m f^2)$, где е и m – заряд и масса электрона. Функция $\tilde{\varepsilon}_1(r,t)$ характеризует флуктуации диэлектрической проницаемости. Неоднородности короны описываются функцией корреляции флуктуаций диэлектрической проницаемости, соответствующей степенному спектру неоднородностей, с внешним и внутренним масштабами турбулентности. При этом предполагается справедливой гипотеза о переносе «замороженной» турбулентности.

Выражение для функции временной когерентности

Для описанной выше модели короны, на основе метода интерференционного интеграла (разложения волнового поля по парциальным волнам) можно получить следующее выражение для функции временной когерентности $\Gamma(\tau) = \langle \tilde{U}(t)\tilde{U}^{*}(t+\tau) \rangle$ поля монохроматической волны, прошедшей через неоднородную околосолнечную плазму [3]:

$$\Gamma(\tau) = \int_{-R_0}^{R_0} \int_{-R_0}^{R_0} A_0(a_1) A_0^*(a_2) \exp\left\{i \left[S_0(a_1,t) - S_0(a_2,t+\tau)\right]\right\} \exp\left\{-\frac{1}{2} \left< \left[\tilde{S}_1(a_1,t) - \tilde{S}_1(a_2,t+\tau)\right]^2 \right> \right\} da_1 da_2,$$
(1)

где S_0 , \tilde{S}_1 – регулярный и случайный набег фазы парциальной волны соответственно; A_0 – амплитуда парциальной волны; a_1 , a_2 – прицельные параметры двух парциальных волн.

Введем суммарно-разностные переменные $\xi = a_1 - a_2$, $a = (a_1 + a_2)/2$ и разложим функции S_0 , \tilde{S}_1 в ряд Тейлора по переменной ξ . Тогда можно получить

$$S_0(a_1,t) - S_0(a_2,t+\tau) \approx \frac{\partial S_0}{\partial a} \xi, \qquad (2)$$

$$\left\langle \left[\tilde{S}_{1}\left(a_{1},t\right) - \tilde{S}_{1}\left(a_{2},t+\tau\right) \right]^{2} \right\rangle \approx D_{S}\left(a,\tau\right) + W\left(a,\tau\right) \frac{\xi^{2}}{4} + W_{1}\left(a,\tau\right)\xi,$$
(3)

где

$$D_{S}(a,\tau) = \left\langle \left[\tilde{S}_{1}(a,t) - \tilde{S}_{1}(a,t+\tau) \right]^{2} \right\rangle,$$

$$W(a,\tau) = \left\langle \left[\frac{\partial S_{1}(a,t)}{\partial a} + \frac{\partial S_{1}(a,t+\tau)}{\partial a} \right]^{2} \right\rangle,$$

$$W_{1}(a,\tau) = \left\langle \tilde{S}_{1}(a,t) \frac{\partial \tilde{S}_{1}(a,t)}{\partial a} \right\rangle + \left\langle \tilde{S}_{1}(a,t) \frac{\partial \tilde{S}_{1}(a,t+\tau)}{\partial a} \right\rangle - \left\langle \tilde{S}_{1}(a,t+\tau) \frac{\partial \tilde{S}_{1}(a,t+\tau)}{\partial a} \right\rangle.$$

Если пренебречь корреляцией между флуктуациями доплеровского сдвига частоты и боковыми смещениями траектории парциальной волны, получим $W_1(a, \tau) = 0$.

Для функций
$$A_0(a_1), A_0(a_2)$$
 предполагается, что
 $A_0(a_1) \approx A_0(a), \quad A_0(a_2) \approx A_0(a).$ (4)

Подставляя выражения (2)–(4) в формулу (1) и асимптотически преобразуя получившееся выражение в условиях сильного рассеяния (когда $\langle \tilde{S}_1^2 \rangle >> 1$), для функции временной когерентности в окрестности регулярной каустики можно получить

$$\Gamma(\tau) = \frac{\Gamma_{\text{avr}}(a_c)}{\left[W(a_c,\tau)\right]^{1/4}} D_{-1/2} \left(\frac{2kd}{\sqrt{W(a_c,\tau)}}\right) \times \exp\left[-\frac{1}{2}D_S(a_c,\tau) - \frac{k^2d^2}{W(a_c,\tau)}\right],$$
(5)

Рис. 2. Геометрия задачи.

где $D_{-1/2}$ – функция параболического цилиндра, d – глубина входа в зону тени (рис. 2), k – волновое число, $a_c = R_0 \sin \theta_c$ – прицельный параметр луча, соединяющего источник с точкой пересечения каустики с орбитой Земли, $\Gamma_{\rm avr}$ – функция, зависящая от распределения средней электронной плотности в короне. Функции W, D_s определяются параметрами корональной турбулентности. Из формулы (5) нетрудно получить выражение для средней интенсивности радиоизлучения $\langle I \rangle$, положив $\tau = 0$.

Результаты моделирования

Для расчетов $\Gamma(\tau)$ по формуле (5) пронормируем эту функцию на ее значение при $\tau = 0$ и d = 0, которое представляет собой среднюю интенсивность радиоизлучения на каустике $\langle I \rangle |_{d=0}$. Тогда для нормированной функции временной когерентности получим:

$$\Gamma_{n}(\tau) = \Gamma_{1}(\tau)\Gamma_{0}(\tau), \qquad (6)$$

где

$$\Gamma_{0}(\tau) = \exp\left[-\frac{1}{2}D_{s}(\tau)\right],$$

$$\Gamma_{1}(\tau) \approx 0.82D_{-1/2}\left(\frac{2kd}{\sqrt{W(\tau)}}\right)\left[\frac{W(0)}{W(\tau)}\right]^{1/4}\exp\left[-\frac{k^{2}d^{2}}{W(\tau)}\right].$$

В качестве примера на левой панели рис. 3 показаны функции Г₀ и Г₁, рассчитанные для различных значений внутреннего масштаба турбулентности для частоты f = 430 МГц при $d = 10^{-3}$ рад. Видно, что во всех случаях характерный временной масштаб изменения функции Г₁ много больше масштаба изменения функции Го. Аналогичный результат получается и при других значениях параметра d, а также при изменении дисперсии относительных флуктуаций электронной плотности $\Delta N_e / N_e$, скорости переноса неоднородностей V и внешнего масштаба турбулентности L₀. Таким образом, при фиксированном d можно записать:

Рис. 3. Левая панель: функции $\Gamma_0(\tau)$ (сплошные линии) и $\Gamma_1(\tau)$ (штриховые линии), рассчитанные для различных внутренних масштабов турбулентности *l*: *l* = 5 км (а), *l* = 1.5 км (b), *l* = 0.4 км (c). Значения других параметров турбулентности: скорость переноса неоднородностей *V* = 100 км/с, внешний масштаб турбулентности $L_0 = 5 \cdot 10^5$ км, дисперсия относительных флуктуаций электронной плотности $\Delta \tilde{N}_e / N_e = 3 \%$. Правая панель: спад нормированной средней интенсивности, рассчитанный для указанных выше значений *l*.

 $\Gamma_n(\tau) = C(d) \exp[-D_s(\tau)/2]$. Нормируя в этом случае на величину C(d), получаем хорошо известное выражение [2], используемое в условиях слабой рефракции радиоизлучения. На правой панели рис. З показаны зависимости нормированной средней интенсивности $\langle I \rangle_n (\langle I \rangle_n = \langle I \rangle (d) / \langle I \rangle |_{d=0})$ от глубины входа *d* в теневую область, рассчитанные также для разных *l*. Расчеты показали, что спад средней интенсивности поля в область каустической тени зависит также и от других параметров неоднородностей плазмы.

Рассчитывая функцию $D_{s}(\tau)$ и спад средней интенсивности $\langle I \rangle_{n}$ в теневую область и сопоставляя результаты расчетов с наблюдениями этих характеристик, можно определить два параметра спектра турбулентных неоднородностей. Такими параметрами могут быть дисперсия относительных флуктуаций электронной плотности $\Delta \tilde{N}_e / N_e$ и внутренний масштаб турбулентности *l*.

Заключение

В условиях, когда функция временной когерентности в окрестности каустики определяется главным образом временной структурной функцией фазы, измерения структурной функции и спада средней интенсивности в теневую область позволяют определить ряд параметров турбулентных неоднородностей короны. Такими параметрами могут быть внутренний масштаб турбулентности и дисперсия относительных флуктуаций электронной плотности.

Работа выполнена при поддержке РФФИ (гранты № 04-02-39003, № 06-02-16295).

СПИСОК ЛИТЕРАТУРЫ

 Яковлев О.И. Космическая радиофизика. М.: Научная книга, 1998. 432 с.

2. Coles W.A., Harmon J.K. Propagation observations of the solar wind near the Sun // Astrophys. J. 1989. V. 337. P. 1023–1034.

3. Afanasiev A.N. The energy spectrum of spacecraft radio signals in the caustic shadow zone of the Sun: A new diagnostic of the solar coronal plasma // J. Atmos. Sol. Terr. Phys. 2005. V. 67. P. 1002–1013.

Институт солнечно-земной физики СО РАН, Иркутск